
DTIC ri coPy

Technical Document 1676
October 1989

The Adaptive Kernelo Neural Network

N D. J. Marchette
C. E. Priebe

I

DTIC
ELECTE
JAN 3 0.OU

Approved for pubic relase; dstribution Is unimited.

90 01 30 0 04

NAVAL OCEAN SYSTEMS CENTER
San Dlego, Californla 92152-5000

J. D. FONTANA, CAPT. USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed by the Advanced Concepts and Development Branch, Code
421, Naval Ocean Systems Center, under the Independent Research Program, OCNR-10P,
Arlington, VA 22217.

Released by Under authority of
M. C. Mudurian, Head J. A. Salzmann, Jr., Head
Advanced Concepts and Ashore Command and
Development Branch Intelligence Centers

Division

JG

Public reporting burden f 06I collection of Wdoriabon Is stimated lo EaQl 1 hour per response. i"udin theu11 firli MVr1Wlng IrlstiIrtOM SOfh~ esting data sorces. gatholing and
maintaining the data needed, and- opleIng and geilmt tecoolectlooflonalon. Send commanita regarding tis. burden estimate or any other aspect ofth~is collection of Information. Including
suggesilonslar reducing Dis.burden. loWashnlon Headquirieresarolcee, DiredOralleforlrdcmmatlon Operationls and Reports, 12116Jellerson D"si Highway. Suite 1204. Arlington. VA 22-4302.

1. AENC US ONL OLsm W* ZREPRT ATE3. REPORT TYPE AND DATES COVERED

IOctober 1989 Final
4. TTLE ND ~ffITLE5. FUNDING NUMBERS

THE DAPIVE ERNL NURALNETORK601152N, ROONO,
6. AUMA(S)ZW13

D. J. Marchette and C. E. Priebe DN 309 032
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TD 1676

9. SPOINSORINQOHITORING AGENCY NAME(S) AND ADORESS4ES) 10. SPONSORINGAIONTORING
AGENCY REPORT NUMBER

Independent Research Program, OCNR-10P
Arlington, VA 22217

11. SUPPL.EMENTARY NOTES

112a. DISTRIBUTIONIAVAILABIUTY STATEMENT i2b. DISTRIBUTION CODE

Approved for public release, distribution is unlimited.

13. ABSTRACT Allaxhman 201) w&Vs)

' A neural network architecture for clustering and classification is described. The Adaptive Kernel Neural Network
(AKNN) is a density estimation technique closely related to kernel estimation. The accompanying learning scheme adjusts the
connection weights, activation functions, and the number of nodes in the network. The network, as described here, is made up of
three layers of nodes: the input layer, a kernel layer and the output, or classification layer. The AKNN retains the inherent
parallelism common in neural network models. Its relationship to the kernel estimator allows the network to be understood
statistically, and meaningful analysis of the internal representations and the outputs is possible.

14. SUR)ECT TERMS 15, NUMBER OF PAGES

neural networks, kernal estimator 17
density estimation mixture model 16, PRICE COOE

I7. SECURITY CLASSIFICATION IS. SECURrtY CLASSIFICATION 10. SECURITY Ct.ASIFICATMO 20 UIMITATION OF ABSTRACT
OF REPOR OF ThI PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7640-0l -2804600 Standard form 2W

CONTENTS

INTRODUCTION ... 1

KERNEL ESTIMATORS ... 1

DETERMINING NETWORK SIZE .. 3

UPDATING NETWORK PARAMETERS 3

EXAMPLESM...L............ E........ S.... . 6

A Mixture of Two Gaussians ... 6
A Mixture of Three Gaussians .. 8
A Cauchy Distribution .. 8

CONCLUSIONS .. 8

REFERENCES .. 12

FIGURES

1. Network implementation of the kernel estimator 2

2. A unimodal two-component mixture 7

3. A bimodal two-component mixture 9

4. A trimodal two-component mixture 10

5. A Cauchy distribution 11

copyL
C

INSPECTIEID A446621"or

UnIC ANuE3

Just irioat io

By _ _

Diatritbut ea/

Availabilty Oode

Dist Special

ii

INTRODUCTION

The problem of pattern recognition has been studied for many years using
many techniques. A typical recognition task consists of a set of exemplars from each
class. The task is to produce a system which can correctly identify the members of
each class. Of course, in many applications, the classes overlap, and the best that can
be done is to give a measure of the probabilities for each class. One way to do this is
to estimate the probability density functions of the different classes and use these as
discriminators.

Recently, the technique of neural networks has enjoyed a resurgence. These
networks have q number of interesting and useful attributes: they are inherently
parallel, they "learn" by example, and they "generalize," in the sense that they inter-
polate the function sought, rather than "memorizing" the teaching set. Some net-
works can continue to adapt after the initial learning, which can be useful in
changing environments. However, many of the currently used neural network archi-
tectures have drawbacks. For example, backpropagation can require a large number
of iterations through the training set and cannot incrementally learn. The networks
are often difficult to analyze, making probabilistic information about the nutput
difficult to obtain. Finally, network size is usually determined in an ad hoc manner.

In this paper, a neural network architecture which addresses these drawbacks
is described. The Adaptive Kernel Neural Network (AKNN) requires a single pass
through the data. If new training sets become available, they can be incorporated in
the system without requiring retraining on the original data set. Thus, it is an adap-
tive system in the true sense of the word. It can run in both supervised and unsuper-
vised modes. Finally, it creates nodes as needed, and so the network grows to the size
required by the problem.

The architecture is based on the kernel estimator, a nonparametric technique
for estimating the probability density function of the data. This paper gives a brief
description of the kernel estimator and the modifications necessary to produce an
adaptive network architecture. Finally, the network is compared to the kernel
estimator for some simulated data.

KERNEL ESTIMATORS

Given a set x1 , x 2, ... , x,, of independent, identically distributed points taken
from a distribution with probability density f, the task is to estimate f. If f is known
to come from a particular class of densities, there are a number of parametric and
nonparametric techniques to find the best match of a member of the class to the data.
Without this a priori information, we would still like to get an estimate of the
density. This is what the kernel estimator is designed to do.

Perhaps the most familiar technique of density estimation is the histogram.
The idea is to partition the input space into rectangles and count the number of
points that fall within each rectangle. Intuitively, a point near the edge of a
rectangle, or bin, should effect the estimate of the neighboring bin, while a point near
the center of the rectangle should have a lesser affect on adjacent bins. In the
histogram estimate, all points within a bin are treated equally and there is no effect
on adjacent bins.

The naive estimator is a modification of the histogram in which a rectangle is
placed at each point, and the rectangles are summed to produce the estimate. More
generally, any probability density function could be used in place of the rectangles.
This is the idea behind the kernel estimator. The kernel estimator for f is defined as

(x) = I K -Xj(1)

where K is a probability density function and h is called the bandwidth or window
width. For more information on the kernel estimator, see Silverman (1986).

For the remainder of this paper, the kernel K will be the multivariate normal
or Gaussian distribution. The summand then becomes

G(x) = (2 e)d-1 I //2 (xp)TI-1(Xp) (2)

for d-dimensional data. Here, bold-faced characters are vectors, and Y is the
covariance matrix. For practical considerations, when d is large, 2 will usually be a
diagonal matrix, rather than the full covariance matrix.

This paradigm can easily be realized as a network architecture. Figure 1
shows a univariate implementation of the kernel estimator as a neural network. Each
node has as its transfer function the Gaussian (equation 2), with the covariance held
locally and the mean stored as the connection weights into the node. The second, or
hidden, layer computes a difference between the input and its weight vector, rather
than the usual dot product. The drawback of this approach is clear. The number of
nodes required by the middle layer is equal to the number of points in the training
set, and so the network can become extremely large. Also, the kernel estimator should
be modified to allow a different variance (bandwidth) for each kernel.

IS

Figure 1. Network Implementation of the kernel estimator.

2

The network implementation provides a new perspective, which allows a
solution to these problems. Each node can independently determine its covariance
from the data. In addition, the network can decide to add a new node based on how
well the data point is covered by existing nodes. This is the basis for the AKNN.

DETERMINING NETWORK SIZE

The network size is a global property of the network and, hence, cannot be
determined locally. When a data point is presented to the network, each node reports
the distance from its mean to the new point. If none of the nodes are close, a new
node is created with mean equal to the new point. In this manner, the network grows
to a size sufficient to cover the data within a predefined distance. This is similar to
the diameter-invariant cluster technique described in Sklansky and Wassel (1981).
The difference is that the distance measure used is the Mahalanobis distance, which
uses the covariance matrix. Since the covariance adapts to the data, as will be
described below, the diameter is not really fixed in this architecture.

The algorithm for the creation of a new node is simple. A constant c, called
the create threshold, is defined which determines the resolution of the estimate. A
scaled version of the Gaussian is used as a distance measure (equation 3), which is
essentially the Mahalanobis distance, exponentiated so that the values run from 0
to 1.

d(x,u,) = e- /2(x -')T 3(x)

If no node reports d(x) > e, a new node is created. If any node reports
d(x,,±):te, the point is considered to be covered, and no new node is created.

A bandwidth or variance still must be chosen for the node, but since this
variance will be adapted to fit the data (see the section below), this choice is not as
critical as in the case of the kernel estimator. Like the create constant, the choice of
initial variance controls the number of nodes created, as can be seen from the
distance function d.

Although it would at first seem that e should be bounded between 0 and 1,
this is not necessarily the case. Two interesting extremes are produced when c is
chosen outside this range. If c > 1, the condition d(x,g) > c is never satisfied, and so a
node is created for each point. This is the kernel estimator described above. If c < 0,
the condition is always satisfied, after the first node is created, and so the estimate
consists of a single Gaussian. In this way, the network spans the range between the
parametric estimator of a single Gaussian and the nonparametric kernel estimator.

UPDATING NETWORK PARAMETERS

The network must also update the means and covariances of the nodes. It is
important that this be done recursively. In many problems, it is costly or impossible
to obtain large data sets for which the true classification is known. Training must be
done on-line, as data are collected. The network must therefore adapt to each point,
rather than allowing the luxury of repeated iterations through a fixed data set. This

3

allows the network to be a truly adaptive system, which continues to "learn" as each
datum is presented, rather than in an off-line method requiring the storage of
previous data and (often a prohibitively long) time to retrain on the data.

Two different approaches will be described. The first uses a decision similar to
the create rule to decide whether a node should be updated, and then it uses recursive
formulations of the sample mean formula to effect the update. In this architecture the
covariance is held fixed. The second uses a Bayes-like rule to update all the nodes
proportionally to the likelihood that the point came from the distribution covered by
the node. The first technique is a purely local computation, but requires the user to
determine another constant defining the update region. The second technique does
not require this user intervention, but it is not local, requiring feedback from the
output nodes.

In the first technique described, the decision to update the node is made in a
manner similar to the decision to create a new node. Unlike the creation decision,
this is a local decision. A constant u, the update threshold, is chosen, and each node
for which d(x,g) > u updates its mean using the new point x. An alternative learning
rule would be to update only the node with the largest value for d(x,A). Note that u
should satisfy ugc. For the two extremes of a single Gaussian and a kernel
estimator, equality should hold.

The formula for updating the mean is an iterative version of the sample mean
calculation:

MA Ak-1 + I (xA -k--) (4)
NA

NA = Nk-1 + 1 (5)

where subscripts indicate time.

Here, NA is the number of points used by the node after the kth input. The
vector Xk is the new data point to be included in the statistics for the node. The
weight on the connection from hidden node i to output (class) node j is then

N,
wji I Ni (6)

i->j

The notation i -> j is shorthand for "node i is connected to node j." There is a
recursive formulation for the computation of the weights wi], but this is unnecessary
for this architecture.

It is possible to define a recursive update formula for the variance in this
architecture. Unfortunately, the hard threshold of the constant u has the effect of
ignoring points in the tail of the Gaussian, which causes a bias in the estimate of the
variance. Although it might be possible to correct for this, the second learning rule,
which will be described below, eliminates this problem in a more natural way. As
mentioned above, this first rule, with the variance fixed, is essentially a diameter-
invariant clustering technique.

4

It is instructive to think of the network as fitting a mixture of normals to the
data. A considerable amount of work has been done in the problem of estimating the
parameters of a mixture of normals, and this work can be used in the context of the
network architecture. For simplicity, as above, we consider the case of estimating the
probability density function of a single class. This work follows that of Titterington,
Smith, and Makov (1985). First, we view the estimate as a mixture of Gaussians

(X) = I xjGj(x) (7)
ji.I

Here Gj is a Gaussian with mean pj and covariance 2j.

Let

S= (x) (8)
(x)

Then

Pk (xk -Ak-1) (9)
iut = Jt-I + Nk-1 +Pk(

+ Pk
Nt- +Pk - I

-Pk (xt -. uk-1) (xk -Yuk-O T- X,-1 (10)
[N,-, + Pk

Nk = Nk- 1 + Pk (11)

Nj
" 1 N, (12)

L->j

This is a recursive technique, but is not local in the neural network sense,
since it requires feedback from an output node for the computation of the Pk. This is
a minor consideration, particularly if one is willing to grant neural network status to
backpropagation. In this learning rule, both the mean and the covariance are up-
dated. Points from the tails of the nodes are used in the computation of the covari-
ance, and, in fact, if the network size is fixed, this is a recursive version of the EM
algorithm used in mixture models (McLachlan and Basford 1988).

Note that once again the weights w can be determined recursively. Also, if N
is a fixed constant for the mean and covariance update formulas, this has the effect of
putting a window on the data, allowing the network to track slowly moving non-
stationary distributions. This is a topic for future research.

5

EXAMPLES

Since the architecture described here models the data as a mixture of
Gaussian, or normal, distributions, it is natural to consider its performance on data
drawn from a mixture of Gaussians. One might hope that in this case the network
would use the correct number of nodes to model the data: if the data came from a
mixture of n Gaussians, the network should have n Gaussian nodes. This is too much
to ask, especially without a rule for the deletion of nodes. In fact, the problem of
identifying the number of components in a mixture is an unsolved problem in the
theory of mixture distributions. If the number of components is known, the network
size can be fixed at the appropriate amount and the parameters of the mixture will be
estimated from the data.

In a typical classification task, there will be a training data set for which the
correct classification is known. This allows the network to be initialized at an esti-
mate which is consistent with the training set. This will improve the performance of
the network if the training set is representative of the overall distribution. In the
examples described below, however, no such training set is assumed. The network
must start from scratch. This has the danger, one shared by all recursive estimators,
that for small data sets the estimate is data dependent. Thus, the estimate for a data
set drawn from a given distribution will be slightly different than for another data set
drawn from the same distribution. The differences are noticeable on the data sets
described, but not large enough to cause concern.

For each of the data sets described, 500 points were generated. Histograms of
the data are plotted, as well as the theoretical distribution. The kernel estimator is
plotted, using the optimal bandwidth described in Silverman (1986), page 40. Four
data sets were used, showing both unimodal and multimodal characteristics.

A MIXTURE OF TWO GAUSSIANS

For the first data set, the data are drawn from a distribution of the form

X -3N (- 1,1) + 2 N(1, 1) (13)
3 3

Figure 2 shows the histogram, kernel, and network estimates. As can be seen,
the estimates all detect a slight bump on the left, corresponding to the smaller of the
two components. The bump is smoothed in the true distribution. The network has
used 9 nodes (figure 2(d)), as opposed to the kernel estimator's 500 nodes. The mode
at about -2.5 in the network estimate is an artifact of the data set: the node was
created near the end of the data, and not enough data have been seen since that to
lower the node's weight.

6

Hlstograa

0.3

0.25

.15

/ 0.1

0.9

-4 -2 2 4

(a)

Kerne I .stlIate
0.3:

0.25,
j/

p0.1

-4 -12 -2--

(b)

Netw'ok02 ,stimate

0.3

0.25

1
1 .15

-4 - 4

(C)

Network Eat a to

0.25-

4.

(d)

FWie 2. A unirnodal tWo-coTonn mbcb.

7

The second data set is the same as the first, except the means of the
components have been moved to give a bimodal distribution (figure 3).

1(12
x -- IN(-2, 1) + 2-N(2, 1) .(14)

3 3

The network estimate has used three nodes (there are actually more, but their
weights are effectively zero). Note that the network has split the smaller mode
between two nodes. Given enough points, the left-most node will probably die out,
leaving essentially a two-component mixture. It should be stressed that the network
cannot be depended upon to find the correct mixture representation for the data, as
can be seen from the first data set.

A MIXTURE OF THREE GAUSSIANS

The third data set is a combination of three components, giving a bimodal, or
trimodal, distribution, depending on how one counts modes (figure 4).

1 1 1
x -- N(-2,.5) + -N(0,1) + -(2,.5) (15)

3 2 6

None of the estimators do a good job on this data set, though the kernel
estimator is the best. Once again the network estimate has come close to estimating
the correct number of components. There are five nodes, of which the smallest two
will be driven down to zero with more points, though experience has shown that it
can take a large number of points to "kill" these nodes.

A CAUCHY DISTRIBUTION

The final example shows the effect of using the Gaussian mixture model on a
distribution for which this model is incorrect. The data are drawn from a Cauchy
distribution, and the network models it as four nodes (figure 5). Since the mode of the
Cauchy distribution is not really a Gaussian, it is futile to try to fit it as one. To
improve the fit, the network would have to create many more nodes, giving a fit
similar to the kernel estimator. This can be done by changing the create threshold.
Note, however, that it does make a creditable attempt to model the tails of the
Cauchy distribution.

CONCLUSIONS
The AKNT is a useful tool for density estimation and its application,

classification. The network can model a wide range of distributions. It is an adaptive
system, and so can be used in situations where the system must continue to modify
its internal representation as data are presented. It can learn the network size, given
an estimate of the smoothness and composition of the density to be approximated.
Unlike many other network models, training time is not an issue for the AKNN.
Therefore, this network is applicable anytime the goal is classification via density
estimation.

Due to its close association with statistical pattern recognition techniques
(kernel estimators and mixture models) and recursive learning procedures, the AKNN
is superior to conventional neural network architectures in many respects.

8

Histogrm

I..

6.2

6.2-

0.15.

1 .1

-4 -2

(a)

meuone stlmits

6.25

6.2

6.1

-I.l

.' /

-4 -24

(b)

Ntworkj Estet

6.25

6.2

0.15

.IS

\61

-4 42(d)

Figure 3. A bimodlal twm-ccnp e mixture.

9

Histogram

.15

-4 -2 2(a)

Kernel I sttlsto

0

i.

i

(b)

Net ak Estimate

0.5

0.1

.1

.05

-4

(b)

F tior Estiati

6.2.

0.-

-4 -2 2

(d)

Figure4. A timodatwo-cmonr Estimat

0

Histogram

h5 l

/

6.2

-4 -2 2 4

(a)

1.

Netork stimato

II

Netwo I Estimate

.15

-4 -2 4 |

(b)

Figme 5. A Cuchy Esiat. on

|S.2

I~t

II

-4 -24

(d)

611

• a l I6.1

REFERENCES

McLachlan, G. J., and K. E. Basford. 1988. Mixture Models: Inference and
Applications to Clustering, Marcel Dekker, New York.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis,
Chapman and Hall, New York.

Sklansky, J., and G. N. Wassel. 1981. Pattern Classifiers and Trainable Machines,
Springer-Verlag, New York.

Titterington, D. M., A. F. M. Smith and U. E. Makov. 1985. Statistical Analysis of
Finite Mixture Distributions, John Wiley, New York.

12

